If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b^2-14b+29=0
a = 1; b = -14; c = +29;
Δ = b2-4ac
Δ = -142-4·1·29
Δ = 80
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{80}=\sqrt{16*5}=\sqrt{16}*\sqrt{5}=4\sqrt{5}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-4\sqrt{5}}{2*1}=\frac{14-4\sqrt{5}}{2} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+4\sqrt{5}}{2*1}=\frac{14+4\sqrt{5}}{2} $
| 3n-2.5=5= | | 21=24.5t-4.9t^2 | | 30w+3w-20w-12w+4w=45 | | 3^x+5=7 | | Y+20+4y+15=180 | | 48=6+6x | | 9(–2f+5)= | | 48m-34m-9m+m=18 | | -14(z−5)=−14z+70 | | 105=(3x+15) | | Y=9.9x+24.6 | | 16=10x-4 | | 15v-3v+5v+3v=20 | | 12 | | -2=x/4-3= | | 12d=2d | | -3x+10=-3+7 | | 16k-11k-2k=15 | | 5n–2=30 | | 8=1.8=1.2x | | 2x^-1=31 | | 4(x−2)+2x=4x−10 | | 4d-4d+5d+5d=20 | | 10x+4x+5=14x+ | | (x-4)/3=-1 | | x÷8=(-14) | | (x-10)=-4 | | 3m+4=2m+23/2 | | (1+r)^(-4)=0.6667 | | –2.5(3x–4)=3.25 | | 96x=576 | | 21x-13=12x-32 |